广泛使用和认可的一种材料特性是材料的强度。 但“力量”这个词是什么意思呢? “力量”可以有多种含义,所以让 我们仔细看看什么是材料的强度。我们会看看 非常容易实验提供了大量有关强度或机械行为的信息 一种材料,称为拉伸测试.
工程师和技术人员进行拉伸测试,因为他们需要确切地知道如何进行拉伸测试 当你拉动材料时,它就会表现出来。总之,拉伸试验是根本 量化材料的“强度”、“刚性”和“延展性”的方法 信息对于安全、可靠的设计和确保一致的制造至关重要 质量,并满足监管或客户要求。
什么是拉伸强度测试?
拉伸是指材料承受张力的能力。基本思想a拉伸强度测试是将材料样品放置在两个称为“夹具”的夹具之间,该夹具将 材料。该材料具有已知的尺寸,例如长度和横截面积。 然后我们开始对一端夹紧的材料施加重量,而另一端 是固定的。我们不断增加重量(通常称为负载或力) 同时测量样品长度的变化。
拉伸测试程序
在工业中,拉伸测试通常遵循以下步骤:
- 样本制备
- 环境调节
-
机器校准和设置
- 选择测试参数
- 运行测试
- 数据收集和计算
- 测试后检查和报告
通过使用以下演示作为指导,可以进行非常简化的操作拉伸测试在家。
- 将某种材料的一端悬挂在一个不动的实心点上。
- 在另一端悬挂重物。
- 在增加重量的同时测量长度的变化,直到零件开始拉伸 最后破裂。
- 此测试的结果是负载(重量)与位移的关系图 (拉伸的量)。
由于拉伸材料所需的重量取决于材料的尺寸 材料(当然还有材料的特性),材料之间的比较 可能非常具有挑战性。
进行适当比较的能力对于设计人员来说非常重要 用于材料必须承受一定力的结构应用。
拉伸测试:横截面积
我们需要一种能够直接比较不同材料的方法,从而得出“强度” 我们的报告与材料的尺寸无关。我们可以通过简单地划分来做到这一点 通过初始横截面施加到材料上的载荷(重量或力) 区。我们还将其移动量(位移)除以初始长度 材料。这产生了材料科学家所说的工程应力(负载 除以初始横截面积)和工程应变(位移 除以初始长度)。通过观察工程应力应变响应 我们可以比较不同材料的强度,而与它们的材料无关 尺寸。
为了使用应力应变响应来设计结构,我们可以将载荷划分 我们想要的是工程应力以确定能够承受该负载所需的横截面积。 例如,一根1/8英寸直径的4340钢丝可以容纳一辆小型汽车。同样,它不是 总是那么简单。我们需要理解“力量”或“力量”的不同含义 工程压力。
拉伸测试:应力与应变
现在情况变得更加复杂。我们来看看不同的含义是什么 强度值,并查看我们可以从这个简单的方法中获得的其他重要属性 测试。最简单的方法是检查工程应力与工程应力的图表 应变。下面显示的是a的图表拉伸测试对于普通钢螺杆,提供了一般金属拉伸的一个很好的例子 测试。单位工程压力是ksi,代表每平方英寸一千磅。请注意对区域的引用 单位。应变的单位当然是无单位的,因为我们除以距离 按距离。
复合材料拉伸测试程序
如果一个人拉扯一种材料直到它破裂,人们可以找到很多关于 材料的各种强度和机械行为。在此拉伸测试虚拟实验我们将检查三种不同的拉伸行为复合纤维材料。它们具有相似的用途,但特性却截然不同。
复合材料实验
描述:该装置拉动材料的每一端,直到其断裂。
玻璃纤维 00:00凯夫拉尔 01:10碳纤维 03:09
视频时长 5 分 5 秒,无音频。
执行制片人艾德·莱蒂拉主持人斯蒂芬·福塞尔摄影师布丽塔·伦德伯格
复合材料最终数据
玻璃纤维的原始数据

位移从零增加到略多于 5 毫米。负载几乎增加 从 0 线性到大约 12 kN,然后几乎垂直下降。
玻璃纤维的更正数据

工程应变从零增加到约0.10。工程压力增加 断裂强度从 0 到约 170 MPa 呈线性。模量为 1.7 GPa。
修正了 Kevlar 的数据

工程应变从零增加到约0.11。工程压力增加 断裂强度从 0 到约 265 MPa 呈线性关系。模量为2.3 GPa。
碳纤维的更正数据

工程应变从零增加到约0.10。工程压力增加 断裂强度从 0 到约 580 MPa 呈线性关系。模量为 5.7 GPa。
复合材料结论
碳纤维复合材料具有更高的性能拉伸比其他材料的强度和弹性模量。注意它们都坏了 以“脆”的方式,因为曲线是线性的,直到它断裂或断裂而没有 高负载下曲线弯曲。因此,不存在永久的变化 测试期间的原始形状,因此没有延展性。
其他拉伸测试虚拟实验示例
您已经看过复合材料的实验。复合材料比较 应力-应变曲线与聚合物和钢的应力-应变曲线。
钢材拉伸试验
颈缩钢样品具有连续的应力应变关系。压力增加 几乎垂直,然后逐渐下降。
聚合物的拉伸测试
拉伸聚合物样品具有不连续的应力应变关系。的 应力几乎垂直增加,然后下降并不均匀地增加。
当我们从点 2 向上移动时,材料上的负载或“应力”会增加,直到我们
达到最大施加应力,同时材料均匀变形或改变形状
沿着整个标距长度。当我们到达点 3 时,我们可以确定拉伸力
材料可以承受的强度或最大应力(或负载)。这不是一个很有用的
属性,因为此时材料已永久变形。当我们到达之后
此时,应力开始急剧向下弯曲。这对应于本地化
变形,通过明显的“颈缩”或直径减小来观察
以及样品在非常小的区域内的相应横截面。如果我们释放
该区域的负载,材料会回弹一点,但仍然会受到影响
永久的形状改变。















